Full text

Turn on search term navigation

© 2023 Du et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Prokaryotic viruses, also known as bacteriophages, play crucial roles in regulating microbial communities and have the potential for phage therapy applications. Accurate prediction of phage-host interactions is essential for understanding the dynamics of these viruses and their impacts on bacterial populations. Numerous computational methods have been developed to tackle this challenging task. However, most existing prediction models can be constrained due to the substantial number of unknown interactions in comparison to the constrained diversity of available training data. To solve the problem, we introduce a model for prokaryotic virus host prediction with graph contrastive augmentation (PHPGCA). Specifically, we construct a comprehensive heterogeneous graph by integrating virus-virus protein similarity and virus-host DNA sequence similarity information. As the backbone encoder for learning node representations in the virus-prokaryote graph, we employ LGCN, a state-of-the-art graph embedding technique. Additionally, we apply graph contrastive learning to augment the node representations without the need for additional labels. We further conducted two case studies aimed at predicting the host range of multi-species phages, helping to understand the phage ecology and evolution.

Details

Title
Prokaryotic virus host prediction with graph contrastive augmentaion
Author
Zhi-Hua Du  VIAFID ORCID Logo  ; Jun-Peng, Zhong; Liu, Yun; Li, Jian-Qiang
First page
e1011671
Section
Research Article
Publication year
2023
Publication date
Dec 2023
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069179311
Copyright
© 2023 Du et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.