Full text

Turn on search term navigation

© 2023 Wood et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For the long term control of an infectious disease such as COVID-19, it is crucial to identify the most likely individuals to become infected and the role that differences in demographic characteristics play in the observed patterns of infection. As high-volume surveillance winds down, testing data from earlier periods are invaluable for studying risk factors for infection in detail. Observed changes in time during these periods may then inform how stable the pattern will be in the long term. To this end we analyse the distribution of cases of COVID-19 across Scotland in 2021, where the location (census areas of order 500–1,000 residents) and reporting date of cases are known. We consider over 450,000 individually recorded cases, in two infection waves triggered by different lineages: B.1.1.529 (“Omicron”) and B.1.617.2 (“Delta”). We use random forests, informed by measures of geography, demography, testing and vaccination. We show that the distributions are only adequately explained when considering multiple explanatory variables, implying that case heterogeneity arose from a combination of individual behaviour, immunity, and testing frequency. Despite differences in virus lineage, time of year, and interventions in place, we find the risk factors remained broadly consistent between the two waves. Many of the observed smaller differences could be reasonably explained by changes in control measures.

Details

Title
Assessing the importance of demographic risk factors across two waves of SARS-CoV-2 using fine-scale case data
Author
Wood, Anthony J  VIAFID ORCID Logo  ; Sanchez, Aeron R; Bessell, Paul R; Wightman, Rebecca; Kao, Rowland R  VIAFID ORCID Logo 
First page
e1011611
Section
Research Article
Publication year
2023
Publication date
Nov 2023
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069179680
Copyright
© 2023 Wood et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.