Full Text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory illness worldwide, but there is no approved pediatric vaccine. Here, we describe the development of the live-attenuated RSV vaccine candidate Min AL as well as engineered derivatives. Min AL was attenuated by codon-pair deoptimization (CPD) of seven of the 11 RSV open reading frames (ORFs) (NS1, NS2, N, P, M, SH and L; 2,073 silent nucleotide substitutions in total). Min AL replicated efficiently in vitro at the permissive temperature of 32°C but was highly temperature sensitive (shut-off temperature of 36°C). When serially passaged at increasing temperatures, Min AL retained greater temperature sensitivity compared to previous candidates with fewer CPD ORFs. However, whole-genome deep-sequencing of passaged Min AL revealed mutations throughout its genome, most commonly missense mutations in the polymerase cofactor P and anti-termination transcription factor M2-1 (the latter was not CPD). Reintroduction of selected mutations into Min AL partially rescued its replication in vitro at temperatures up to 40°C, confirming their compensatory effect. These mutations restored the accumulation of positive-sense RNAs to wild-type (wt) RSV levels, suggesting increased activity by the viral transcriptase, whereas viral protein expression, RNA replication, and virus production were only partly rescued. In hamsters, Min AL and derivatives remained highly restricted in replication in the upper and lower airways, but induced serum IgG and IgA responses to the prefusion form of F (pre F) that were comparable to those induced by wt RSV, as well as robust mucosal and systemic IgG and IgA responses against RSV G. Min AL and derivatives were fully protective against challenge virus replication. The derivatives had increased genetic stability compared to Min AL. Thus, Min AL and derivatives with selected mutations are stable, attenuated, yet highly-immunogenic RSV vaccine candidates that are available for further evaluation.

Details

Title
Intranasal respiratory syncytial virus vaccine attenuated by codon-pair deoptimization of seven open reading frames is genetically stable and elicits mucosal and systemic immunity and protection against challenge virus replication in hamsters
Author
Megan Levy Current address: PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachussetts, United States of America; Kaiser, Jaclyn A; Hong-Su, Park; Liu, Xueqiao; Yang, Lijuan; Santos, Celia; Buchholz, Ursula J; Cyril Le Nouën  VIAFID ORCID Logo 
First page
e1012198
Section
Research Article
Publication year
2024
Publication date
May 2024
Publisher
Public Library of Science
ISSN
15537366
e-ISSN
15537374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069183384
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.