Full Text

Turn on search term navigation

© 2023 Buss et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Salivary gland hypofunction is an adverse side effect associated with radiotherapy for head and neck cancer patients. This study delineated metabolic changes at acute, intermediate, and chronic radiation damage response stages in mouse salivary glands following a single 5 Gy dose. Ultra-high performance liquid chromatography-mass spectrometry was performed on parotid salivary gland tissue collected at 3, 14, and 30 days following radiation (IR). Pathway enrichment analysis, network analysis based on metabolite structural similarity, and network analysis based on metabolite abundance correlations were used to incorporate both metabolite levels and structural annotation. The greatest number of enriched pathways are observed at 3 days and the lowest at 30 days following radiation. Amino acid metabolism pathways, glutathione metabolism, and central carbon metabolism in cancer are enriched at all radiation time points across different analytical methods. This study suggests that glutathione and central carbon metabolism in cancer may be important pathways in the unresolved effect of radiation treatment.

Details

Title
Metabolomics analysis of pathways underlying radiation-induced salivary gland dysfunction stages
Author
Buss, Lauren G; Diogo De Oliveira Pessoa; Snider, Justin M; Padi, Megha; Martinez, Jessica A  VIAFID ORCID Logo  ; Limesand, Kirsten H  VIAFID ORCID Logo 
First page
e0294355
Section
Research Article
Publication year
2023
Publication date
Nov 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069280683
Copyright
© 2023 Buss et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.