Abstract

Silicon is indisputably the most advanced material for scalable electronics, but it is a poor choice as a light source for photonic applications, due to its indirect band gap. The recently developed hexagonal Si1−xGex semiconductor features a direct bandgap at least for x > 0.65, and the realization of quantum heterostructures would unlock new opportunities for advanced optoelectronic devices based on the SiGe system. Here, we demonstrate the synthesis and characterization of direct bandgap quantum wells realized in the hexagonal Si1−xGex system. Photoluminescence experiments on hex-Ge/Si0.2Ge0.8 quantum wells demonstrate quantum confinement in the hex-Ge segment with type-I band alignment, showing light emission up to room temperature. Moreover, the tuning range of the quantum well emission energy can be extended using hexagonal Si1−xGex/Si1−yGey quantum wells with additional Si in the well. These experimental findings are supported with ab initio bandstructure calculations. A direct bandgap with type-I band alignment is pivotal for the development of novel low-dimensional light emitting devices based on hexagonal Si1−xGex alloys, which have been out of reach for this material system until now.

Authors demonstrate the synthesis and characterization of direct bandgap quantum wells in the hexagonal Si1−xGex system. Photoluminescence experiments show light emission up to room temperature, and the emission wavelength can be tuned by thickness of the wells and the Si composition.

Details

Title
Direct bandgap quantum wells in hexagonal Silicon Germanium
Author
Peeters, Wouter H. J. 1   VIAFID ORCID Logo  ; van Lange, Victor T. 1   VIAFID ORCID Logo  ; Belabbes, Abderrezak 2 ; van Hemert, Max C. 1   VIAFID ORCID Logo  ; Jansen, Marvin Marco 1   VIAFID ORCID Logo  ; Farina, Riccardo 1   VIAFID ORCID Logo  ; van Tilburg, Marvin A. J. 1   VIAFID ORCID Logo  ; Verheijen, Marcel A. 3   VIAFID ORCID Logo  ; Botti, Silvana 4   VIAFID ORCID Logo  ; Bechstedt, Friedhelm 5   VIAFID ORCID Logo  ; Haverkort, Jos. E. M. 1   VIAFID ORCID Logo  ; Bakkers, Erik P. A. M. 1   VIAFID ORCID Logo 

 Eindhoven University of Technology, Department of Applied Physics, Eindhoven, The Netherlands (GRID:grid.6852.9) (ISNI:0000 0004 0398 8763) 
 Sultan Qaboos University, Department of Physics, Muscat, Oman (GRID:grid.412846.d) (ISNI:0000 0001 0726 9430); Friedrich-Schiller-Universität Jena, Institut für Festkörpertheorie und -optik, Jena, Germany (GRID:grid.9613.d) (ISNI:0000 0001 1939 2794) 
 Eindhoven University of Technology, Department of Applied Physics, Eindhoven, The Netherlands (GRID:grid.6852.9) (ISNI:0000 0004 0398 8763); Eurofins Materials Science Netherlands BV, Eindhoven, The Netherlands (GRID:grid.6852.9) 
 Friedrich-Schiller-Universität Jena, Institut für Festkörpertheorie und -optik, Jena, Germany (GRID:grid.9613.d) (ISNI:0000 0001 1939 2794); Ruhr University Bochum, Research Center Future Energy Materials and Systems of the University Alliance Ruhr and Interdisciplinary Centre for Advanced Materials Simulation, Bochum, Germany (GRID:grid.5570.7) (ISNI:0000 0004 0490 981X) 
 Friedrich-Schiller-Universität Jena, Institut für Festkörpertheorie und -optik, Jena, Germany (GRID:grid.9613.d) (ISNI:0000 0001 1939 2794) 
Pages
5252
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069691295
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.