It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Evaluating fluid responsiveness with dynamic parameters is recommended for fluid management. However, in hemodynamically stable patients who are breathing spontaneously, accurately measuring stroke volume variation via echocardiography and passive leg raising is challenging due to subtle SV changes. This study aimed to identify normal SV changes in healthy volunteers and evaluate the precision of hemodynamic parameters in screening mild hypovolemia in patients. This prospective, repeated-measures, cross-sectional study screened 269 subjects via echocardiography. Initially, 45 healthy volunteers underwent a fluid challenge test, the outcomes of which served as criteria to screen 215 ICU patients. Among these patients, 53 underwent additional fluid challenge testing. Hemodynamic parameters, including medians of maximum velocity time integrals (VTImaxs), peak velocity of VTImax (PV), internal jugular vein diameters (IJVD), and area (IJVA) were repeatedly measured first at a 60° upper body elevation (UBE), second in a supine position, third at UBE, fourth in a supine position, and lastly in a supine position after fluid loading. The hemodynamic responses to the position changes were compared between 83 fluid non-responders and 15 fluid responders. Fluid responsiveness was defined as fluid-induced medians’ change of VTImaxs (fluid-induced median VTImax change) ≥ 10%. None of the healthy volunteers showed the mean value of repeatedly measured medians of VTImaxs ≥ 7%, following either UBE position (UBE-induced median VTImax change) or fluid loading (fluid-induced median VTImax change). UBE-induced median VTImax and PV changes were significantly correlated with fluid responsiveness (p < 0.001, AUC 0.959; p < 0.001, AUC 0.804). The significant correlations were demonstrated via multivariable analysis using binary logistic regression (p = 0.001, OR 90.1) and the correlation coefficient (R2 = 0.793) using linear regression analysis. UBE-induced median VTImax changes (≥ 11.8% and 7.98%) predicted fluid-induced median VTImax changes ≥ 10% and 7% (AUC 0.959 and 0.939). The collapsibility and variation of IJVD and IJVA showed no significant correlation. An increase in the mean value of medians of repeatedly measured VTImaxs transitioning from an UBE to a supine position, effectively screened mild hypovolemia and demonstrated a significant correlation with fluid responsiveness in spontaneously breathing patients maintaining hemodynamic stability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Sungkyunkwan University School of Medicine, Department of Emergency Medicine, Samsung Changwon Hospital, Changwon-si, South Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)
2 Dong-A University College of Medicine, Department of Emergency Medicine, Busan, South Korea (GRID:grid.255166.3) (ISNI:0000 0001 2218 7142)