Abstract

Transition metal chalcogenides have been identified as low-cost and efficient electrocatalysts to promote the hydrogen evolution reaction in alkaline media. However, the identification of active sites and the underlying catalytic mechanism remain elusive. In this work, we employ operando X-ray absorption spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy to elucidate that NiS undergoes an in-situ phase transition to an intimately mixed phase of Ni3S2 and NiO, generating highly active synergistic dual sites at the Ni3S2/NiO interface. The interfacial Ni is the active site for water dissociation and OH* adsorption while the interfacial S acts as the active site for H* adsorption and H2 evolution. Accordingly, the in-situ formation of Ni3S2/NiO interfaces enables NiS electrocatalysts to achieve an overpotential of only 95 ± 8 mV at a current density of 10 mA cm−2. Our work highlighted that the chemistry of transition metal chalcogenides is highly dynamic, and a careful control of the working conditions may lead to the in-situ formation of catalytic species that boost their catalytic performance.

Transition metal chalcogenides are effective and economical electrocatalysts for the hydrogen evolution reaction in alkaline media, yet active sites and catalytic mechanisms remain unclear. Here the authors use operando spectroscopy to study the in-situ conversion of NiS to highly active Ni3S2/NiO dual-site catalysts for the alkaline hydrogen evolution reaction.

Details

Title
Dynamic restructuring of nickel sulfides for electrocatalytic hydrogen evolution reaction
Author
Ding, Xingyu 1   VIAFID ORCID Logo  ; Liu, Da 2   VIAFID ORCID Logo  ; Zhao, Pengju 3 ; Chen, Xing 3 ; Wang, Hongxia 3 ; Oropeza, Freddy E. 4   VIAFID ORCID Logo  ; Gorni, Giulio 5 ; Barawi, Mariam 4 ; García-Tecedor, Miguel 4   VIAFID ORCID Logo  ; de la Peña O’Shea, Víctor A. 4   VIAFID ORCID Logo  ; Hofmann, Jan P. 6   VIAFID ORCID Logo  ; Li, Jianfeng 3   VIAFID ORCID Logo  ; Kim, Jongkyoung 7 ; Cho, Seungho 7   VIAFID ORCID Logo  ; Wu, Renbing 2   VIAFID ORCID Logo  ; Zhang, Kelvin H. L. 3   VIAFID ORCID Logo 

 Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen, China (GRID:grid.12955.3a) (ISNI:0000 0001 2264 7233); Fudan University, Department of Materials Science, Shanghai, China (GRID:grid.8547.e) (ISNI:0000 0001 0125 2443) 
 Fudan University, Department of Materials Science, Shanghai, China (GRID:grid.8547.e) (ISNI:0000 0001 0125 2443) 
 Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen, China (GRID:grid.12955.3a) (ISNI:0000 0001 2264 7233) 
 Parque Tecnológico de Móstoles, Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Spain (GRID:grid.466854.d) (ISNI:0000 0004 1762 4055) 
 Institute of Optics (CSIC), Laser Processing Group, Madrid, Spain (GRID:grid.483427.e) (ISNI:0000 0001 0658 1350); CELLS-ALBASynchrotron, Cerdanyola del Vallès, Spain (GRID:grid.483427.e) 
 Technical University of Darmstadt, Surface Science Laboratory, Department of Materials and Earth Sciences, Darmstadt, Germany (GRID:grid.6546.1) (ISNI:0000 0001 0940 1669) 
 Ulsan National Institute of Science and Technology (UNIST), Department of Materials Science and Engineering, Ulsan, Republic of Korea (GRID:grid.42687.3f) (ISNI:0000 0004 0381 814X) 
Pages
5336
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3071634891
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.