Abstract

Dysarthria is a speech disorder that affects the ability to communicate due to articulation difficulties. This research proposes a novel method for automatic dysarthria detection (ADD) and automatic dysarthria severity level assessment (ADSLA) by using a variable continuous wavelet transform (CWT) layered convolutional neural network (CNN) model. To determine their efficiency, the proposed model is assessed using two distinct corpora, TORGO and UA-Speech, comprising both dysarthria patients and healthy subject speech signals. The research study explores the effectiveness of CWT-layered CNN models that employ different wavelets such as Amor, Morse, and Bump. The study aims to analyze the models’ performance without the need for feature extraction, which could provide deeper insights into the effectiveness of the models in processing complex data. Also, raw waveform modeling preserves the original signal’s integrity and nuance, making it ideal for applications like speech recognition, signal processing, and image processing. Extensive analysis and experimentation have revealed that the Amor wavelet surpasses the Morse and Bump wavelets in accurately representing signal characteristics. The Amor wavelet outperforms the others in terms of signal reconstruction fidelity, noise suppression capabilities, and feature extraction accuracy. The proposed CWT-layered CNN model emphasizes the importance of selecting the appropriate wavelet for signal-processing tasks. The Amor wavelet is a reliable and precise choice for applications. The UA-Speech dataset is crucial for more accurate dysarthria classification. Advanced deep learning techniques can simplify early intervention measures and expedite the diagnosis process.

Details

Title
Automatic dysarthria detection and severity level assessment using CWT-layered CNN model
Author
Sajiha, Shaik 1 ; Radha, Kodali 2 ; Venkata Rao, Dhulipalla 1 ; Sneha, Nammi 1 ; Gunnam, Suryanarayana 1 ; Bavirisetti, Durga Prasad 3   VIAFID ORCID Logo 

 Velagapudi Ramakrishna Siddhartha Engineering College, Department of Electronics & Communication Engineering, Vijayawada, India (GRID:grid.411829.7) (ISNI:0000 0004 1775 4749) 
 Velagapudi Ramakrishna Siddhartha Engineering College, Department of Electronics & Communication Engineering, Vijayawada, India (GRID:grid.411829.7) (ISNI:0000 0004 1775 4749); University of Tennessee Health Science Center, Division of Pediatric Neurology, Department of Pediatrics, Memphis, USA (GRID:grid.267301.1) (ISNI:0000 0004 0386 9246) 
 Norwegian University of Science and Technology, Department of Computer Science, Trondheim, Norway (GRID:grid.5947.f) (ISNI:0000 0001 1516 2393) 
Pages
33
Publication year
2024
Publication date
Dec 2024
Publisher
Springer Nature B.V.
ISSN
16874714
e-ISSN
16874722
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072086656
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.