Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Deriving insight from data is a challenging task for researchers and practitioners, especially when working on spatio-temporal domains. If pattern searching is involved, the complications introduced by temporal data dimensions create additional obstacles, as traditional data mining techniques are insufficient to address spatio-temporal databases (STDBs). We hereby present a new algorithm, which we refer to as F1/FP, and can be described as a probabilistic version of the Minus-F1 algorithm to look for periodic patterns. To the best of our knowledge, no previous work has compared the most cited algorithms in the literature to look for periodic patterns—namely, Apriori, MS-Apriori, FP-Growth, Max-Subpattern, and PPA. Thus, we have carried out such comparisons and then evaluated our algorithm empirically using two datasets, showcasing its ability to handle different types of periodicity and data distributions. By conducting such a comprehensive comparative analysis, we have demonstrated that our newly proposed algorithm has a smaller complexity than the existing alternatives and speeds up the performance regardless of the size of the dataset. We expect our work to contribute greatly to the mining of astronomical data and the permanently growing online streams derived from social media.

Details

Title
An Efficient Probabilistic Algorithm to Detect Periodic Patterns in Spatio-Temporal Datasets
Author
Gutiérrez-Soto, Claudio 1   VIAFID ORCID Logo  ; Galdames, Patricio 2   VIAFID ORCID Logo  ; Palomino, Marco A 3   VIAFID ORCID Logo 

 Departamento de Sistemas de Información, Universidad del Bío-Bío, Concepción 4030000, Chile; [email protected] 
 Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4090000, Chile; [email protected] 
 School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, UK 
First page
59
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
25042289
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072265978
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.