Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In engineering, concrete often develops cracks due to various reasons, which accelerate the erosion rate of chloride ions in concrete and consequently expedite the degradation of the mechanical properties of concrete structures. This study simplifies the four-phase model into a two-phase model using homogenization methods. Based on this, numerical simulations are employed to investigate the influences of dimensionless structural parameters and material parameters of cracks on the equivalent diffusion coefficient of cracked concrete, and a theoretical model for the equivalent diffusion coefficient of cracked concrete is established according to Fick’s diffusion law. The research findings indicate that when cracks are positioned in the middle of the boundary through which chloride ions enter and exit the concrete, and the direction of the cracks is parallel to the diffusion direction of chloride ions; this scenario is the most detrimental to the durability of concrete. For n cracks (n ≥ 2), when they are parallel to the x-axis and symmetrical about the x-axis, and the spacing between cracks equals 1/n times the width of the concrete, this scenario is the most detrimental to the durability of concrete containing multiple cracks. Whether for a single crack or multiple cracks, when they are in the most unfavorable condition, the “parallel-then-series” theoretical model can accurately predict the equivalent diffusion coefficient of cracked concrete.

Details

Title
Study on the Effect of Cracking Parameters on the Migration Characteristics of Chloride Ions in Cracked Concrete
Author
Huang, Tao 1 ; Feng, Shuang 1 ; Wang, Mengge 1 ; Peng, Zhongqi 1 

 School of Engineering, Architecture and the Environment, Hubei University of Technology, Wuhan 430086, China; [email protected] (S.F.); [email protected] (M.W.); [email protected] (Z.P.); Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430086, China 
First page
1738
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072299503
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.