It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The core and surface structure and magnetic properties of mechano synthesized LaFeO3 nanoparticles (30–40 nm), their Eu3+-doped (La0.70Eu0.30FeO3), and Eu3+/Cr3+ co-doped (La0.70Eu0.30Fe0.95Cr0.05O3) variants are reported. Doping results in a transition from the O′-type to the O-type distorted structure. Traces of reactants, intermediate phases, and a small amount of Eu2+ ions were detected on the surfaces of the nanoparticles. The nanoparticles consist of antiferromagnetic cores flanked by ferromagnetic shells. The Eu3+ dopant ions enhance the magnetization values relative to those of the pristine nanoparticles and result in magnetic susceptibilities compatible with the presence of Eu3+ van Vleck paramagnetism of spin–orbit coupling constant (λ = 363 cm−1) and a low temperature Curie–Weiss like behavior associated with the minority Eu2+ ions. Anomalous temperature-dependent magnetic hardening due to competing magnetic anisotropy and magnetoelectric coupling effects together with a temperature-dependent dopant-sensitive exchange bias, caused by thermally activated spin reversals at the core of the nanoparticles, were observed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Sultan Qaboos University, Physics Department, Muscat, Oman (GRID:grid.412846.d) (ISNI:0000 0001 0726 9430)
2 Sultan Qaboos University, Nanotechnology Research Center, Muscat, Oman (GRID:grid.412846.d) (ISNI:0000 0001 0726 9430)