Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The porosity characteristics of coal seams serve as a pivotal factor in assessing the development potential of coalbed methane (CBM) resources, significantly influencing the adsorption and permeability capabilities of coal reservoirs, as well as the accumulation, entrapment, and preservation of CBM. In this study, we focused on the coal seams of the Xishanyao Formation in the western part of the southern Junggar Basin (NW China). By leveraging the complementarity of nuclear magnetic resonance (NMR), low-temperature liquid nitrogen experiments, and high-pressure mercury intrusion porosimetry (MIP) in spatial exploration range and precision, we conducted a comprehensive analysis to achieve a fine description of porosity characteristics. Furthermore, we explored the coal petrology factors controlling the pore characteristics of the Xishanyao Formation, aiming to provide geological evidence for the selection of favorable areas and the development potential evaluation of CBM in the study area. The results indicate the following: (1) The total pore volume of the coal samples is 6.318 × 10−3 cm3/g on average, and the micropore volume accounts for a relatively high proportion (averaging 44.17%), followed by the fine pores (averaging 39.41%). The average porosity is approximately 3.87%, indicating good gas storage and connectivity of the coal seams, albeit with some heterogeneity. The coal reservoir is dominated by micropores and fine pores with diameters less than 100 nm, and the pore structure is characterized by low pore volume and high pore area. (2) The pore structure is influenced by both the coalification degree and the coal maceral. Within the range of low coalification, porosity increases with the increase in coalification degree. Building upon this, an increase in the vitrinite content promotes the development of micropores and fine pores, while an increase in the inertinite content promotes the development of meso–macropores. The clay mineral content exhibits a negative correlation with the adsorption pore volume ratio and a positive correlation with the seepage pore volume ratio.

Details

Title
Porosity Characteristics of Coal Seams and the Control Mechanisms of Coal Petrology in the Xishanyao Formation in the Western Part of the Southern Junggar Basin
Author
Yuan, Yuan 1 ; Tang, Yue 1 ; Tong, Lihua 1 ; Cao, Daiyong 2   VIAFID ORCID Logo  ; Wei, Yingchun 2   VIAFID ORCID Logo  ; Bi, Caiqin 1 

 Oil and Gas Survey, China Geological Survey, Beijing 100083, China; State Key Laboratory of Continental Shale Oil, Beijing 100083, China 
 College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China 
First page
543
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072455473
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.