Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Coriolopsis spp. are wood-decaying fungi that inhabit forests. They are mainly distributed in tropical and subtropical areas. Strain Epi910 was isolated from the asymbiotically germinated protocorm of Epidendrum sp. and identified as Coriolopsis strumosa. Symbiotic germination and high-throughput sequencing of the endophytic fungal communities of different parts were performed to characterize the function and spatial distribution of the Epi910 isolate. Under symbiotic germination, Epi910 promoted seed germination and seedling formation as an endophytic native fungus of Epidendrum sp. Endophytic fungal communities from seven different parts of Epidendrum sp. were characterized. In total, 645 OTUs were identified; 30 OTUs were shared among all seven parts. The internal transcribed spacer sequence of Epi910 was identical to that of a dominant shared OTU (OTU6). The relative abundance of OTU6 in the seven parts was identified as follows: capsule pericarp > seed > root > asymbiotically germinated protocorm > epiphytic root > ovary > rachis. Our results suggest that the isolate belonging to Coriolopsis strumosa could promote the germination of Epidendrum sp. There may, therefore, be endophytic fungi other than common orchid mycorrhizal fungi with the ability to enhance germination in orchids.

Details

Title
Coriolopsis strumosa as an Orchid Endophytic Fungus and Its Spatial Distribution in Epidendrum sp. (Orchidaceae)
Author
Yao, Na 1   VIAFID ORCID Logo  ; Wang, Tao 2 ; Jiang, Jingwan 2 ; Yang, Yuqian 2 ; Cao, Xiaolu 1   VIAFID ORCID Logo 

 State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; [email protected] 
 Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing 100093, China; [email protected] (T.W.); [email protected] (J.J.); [email protected] (Y.Y.) 
First page
1054
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20762607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072589005
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.