Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The chemical reaction of 2-(methylsulfinyl)naphtho[2,3-d]thiazole-4,9-dione (3) using different amines, including benzylamine (4a), morpholine (4b), thiomorpholine (4c), piperidine (4d), and 4-methylpiperazine (4e), produced corresponding new tricyclic naphtho[2,3-d]thiazole–4,9–dione compounds (5ae) in moderate-to-good yields. The photophysical properties and antimicrobial activities of these compounds (5ae) were then characterized. Owing to the extended π-conjugated system of naphtho[2,3-d]thiazole–4,9–dione skeleton and substituent effect, 5ae showed fluorescence both in solution and in the solid state. The introduction of nitrogen-containing heterocycles at position 2 of the thiazole ring on naphtho[2,3-d]thiazole-4,9-dione led to large bathochromic shifts in solution, and 5be exhibited orange-red fluorescence with emission maxima of over 600 nm in highly polar solvents. Staphylococcus aureus (S. aureus) is a highly pathogenic bacterium, and infection with its antimicrobial-resistant pathogen methicillin-resistant S. aureus (MRSA) results in serious clinical problems. In this study, we also investigated the antimicrobial activities of 5ae against S. aureus, MRSA, and S. epidermidis. Compounds 5c with thiomorpholine group and 5e with 4-methylpiperazine group showed potent antimicrobial activity against these bacteria. These results will lead to the development of new fluorescent dyes with antimicrobial activity in the future.

Details

Title
Synthesis and Photophysical Characterization of Fluorescent Naphtho[2,3-d]thiazole-4,9-Diones and Their Antimicrobial Activity against Staphylococcus Strains
Author
Hagimori, Masayori 1   VIAFID ORCID Logo  ; Hara, Fumiko 1 ; Mizuyama, Naoko 2 ; Takada, Shinya 1 ; Hayashi, Saki 3 ; Haraguchi, Tamami 4 ; Hatanaka, Yoshiro 5 ; Nagao, Toshihiro 5 ; Tanaka, Shigemitsu 5 ; Yoshii, Miki 5 ; Yoshida, Miyako 4 

 Department of Analitical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; [email protected] (F.H.); [email protected] (S.T.) 
 Division of Medical Innovation, Translational Research Center for Medical Innovation, 1-5-4 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan; [email protected] 
 Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; [email protected] (S.H.); [email protected] (T.H.) 
 Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; [email protected] (S.H.); [email protected] (T.H.); Institute for Women’s Career Advancement and Gender Equality Development, Mukogawa Women’s University, 6-46 Ikebiraki, Nishinomiya City 663-8558, Hyogo, Japan 
 Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; [email protected] (Y.H.); [email protected] (T.N.); [email protected] (S.T.); [email protected] (M.Y.) 
First page
2777
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072618858
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.