Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Drug delivery selectivity is a challenge for cancer treatment. A hybrid pegylated pH-sensitive liposome–extracellular vesicle isolated from human breast cancer cell MDA-MB-231 was developed to investigate its in vitro activity against breast cancer cells of different molecular profiles to overcome this inconvenience. The hybrid nanosystem was produced by film hydration, and doxorubicin (DOX) was encapsulated in this system using the ammonium sulfate gradient method. The characterization of this hybrid nanosystem revealed a mean diameter of 140.20 ± 2.70 nm, a polydispersity index of 0.102 ± 0.033, an encapsulation efficiency of doxorubicin of 88.9% ± 2.4, and a great storage stability for 90 days at 4 °C. The fusion of extracellular vesicles with liposomes was confirmed by nanoflow cytometry using PE-conjugated human anti-CD63. This hybrid nanosystem demonstrated cytotoxicity against human breast cancer cell lines with different molecular subtypes, enhanced anti-migration properties, and exhibited similar cellular uptake to the free DOX treatment. Preliminary acute toxicity assessments using Balb/C female mice indicated a median lethal dose of 15–17.5 mg/kg, with no evidence of splenic, liver, heart, bone marrow, and renal damage at a dose of 15 mg/kg. These findings suggest the hybrid formulation as a versatile nanocarrier for the treatment of various breast cancer subtypes.

Details

Title
Hybrid Nanosystem Formed by DOX-Loaded Liposomes and Extracellular Vesicles from MDA-MB-231 Is Effective against Breast Cancer Cells with Different Molecular Profiles
Author
Luiza Marques Paschoal Barbosa 1   VIAFID ORCID Logo  ; Eliza Rocha Gomes 2 ; André Luis Branco de Barros 3   VIAFID ORCID Logo  ; Geovanni Dantas Cassali 4   VIAFID ORCID Logo  ; Andréa Teixeira de Carvalho 5 ; de Oliveira Silva, Juliana 1 ; Pádua, Ana Luiza 1 ; Oliveira, Mônica Cristina 1 

 Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; [email protected] (E.R.G.); 
 Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; [email protected] (E.R.G.); ; Institute of Regenerative Medicine and Biotherapies (IRMB), Hôpital Saint-Eloi, 34295 Montpellier, France 
 Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; [email protected] (E.R.G.); ; Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil 
 Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil 
 Instituto René Rachou, Fiocruz Minas, Av. Augusto de Lima, 1715, Barro Preto, Belo Horizonte 30190-002, MG, Brazil 
First page
739
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072638862
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.