Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) form an important group of organic pollutants due to their distribution in the environment and their carcinogenic and/or mutagenic effects. In order to identify at the molecular level some of the players in the biodegradation and tolerance response to PAHs in plants, we have phenotyped 32 Arabidopsis thaliana T-DNA mutant lines corresponding to 16 cytochrome P450 (CYP) genes that showed to be differentially expressed under contrasted stress conditions induced by phenanthrene, a 3-ring PAH. This screening has allowed us to identify CYP75B1 (At5g07990) T-DNA mutants as the only ones being sensitive to phenanthrene-induced stress, supporting that CYP75B1 protein is necessary for PAH tolerance. CYP75B1 codes for a 3′flavonol hydroxylase. CYP75B1 gene was heterologously expressed on yeast in order to investigate whether it affects the A. thaliana response to phenanthrene by participating in its metabolization. Heterologously-produced CYP75B1 enzyme shows to be catalytically efficient against its physiological substrates (e.g., naringenin) but unable to metabolize phenanthrene or 9-phenanthrenol. In contrast, CYP75B1 seems rather involved in phenanthrene tolerance as a crucial element by regulating concentration of antioxidants through the production of 3′-hydroxylated flavonoids such as quercetin and cyanidin. In particular, we report a highly increased generation of reactive oxygen species (H2O2 and singlet oxygen) in cyp75b1 mutants compared to control plants in response to phenanthrene treatment. Overall, CYP75B1 shows to play an important role in the response to the deleterious effects of phenanthrene exposure and this is related to oxidative stress sensitivity rather than metabolization.

Details

Title
Phenanthrene-Induced Cytochrome P450 Genes and Phenanthrene Tolerance Associated with Arabidopsis thaliana CYP75B1 Gene
Author
Cabello-Hurtado, Francisco  VIAFID ORCID Logo  ; Abdelhak El Amrani
First page
1692
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072658514
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.