Full text

Turn on search term navigation

© 2024 Manivannan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sketch maps are valuable tools used across various disciplines including spatial cognition, environmental psychology, and spatial reasoning. A common approach to evaluate sketch maps in research is to align and compare them with metric maps. However, sketch maps are highly abstract and contain generalized information causing difficulty in their alignment. Current approaches to study sketch maps cannot handle generalized information. They require a one-on-one correspondence between features in the metric map and features in the sketch map. But memory is often generalized. This paper makes two contributions to the research on sketch maps: (i) we present an algorithmic approach to detect generalization in sketch maps (ii) we present an online tool that creates a generalized metric map corresponding to features in sketch maps. Previously, we identified nine types of generalization in sketch maps. In this paper, we develop formal operators to detect these generalizations and implement them as an online tool. We evaluated our algorithm with a set of 11 sketch maps containing 84 instances of generalization. The results indicated that our algorithm consistently detects instances of generalization in sketch maps.

Details

Title
An algorithmic approach to detect generalization in sketch maps from sketch map alignment
Author
Manivannan, Charu  VIAFID ORCID Logo  ; Krukar, Jakub; Schwering, Angela  VIAFID ORCID Logo 
First page
e0304696
Section
Research Article
Publication year
2024
Publication date
Jun 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072690099
Copyright
© 2024 Manivannan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.