Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aeromagnetic surveys are widely used in geological exploration, mineral resource assessment, environmental monitoring, military reconnaissance, and other areas. It is necessary to perform magnetic compensation for interference in these fields. In recent years, large unmanned aerial vehicles (UAVs) have been more suitable for magnetic detection missions because of the greater loads they can carry. This article proposes some methods for the magnetic compensation of large multiload UAVs. Because of the interference of the large platform and instrument noise, the standard deviations (stds) of the compensation data used in this paper are larger. At the beginning of this article, using the traditional T-L model, we avoid the shortcomings of the anti-magnetic interference ability of triaxial magnetic gate magnetometers. The direction cosine information is obtained by using an inertial navigation system, the global positioning system, and a triaxial magnetic gate magnetometer. Then, we increase the amplitude of the maneuvers in the compensation process; this reduces the multicollinearity problems in the compensation matrix to a certain extent, but it also results in greater magnetic field interference. Lastly, we employ the method of Lasso regularization Newton iteration (LRNM). Compared to the traditional methods of least squares (LS) and singular value decomposition (SVD), LRNM provides improvements of 34% and 27%, respectively. In summary, this series of schemes can be used to perform effective compensation for large multi-load UAVs and improve the actual use of large UAVs, making them more accurate in the measurement of aeromagnetic survey data.

Details

Title
An Aeromagnetic Compensation Strategy for Large UAVs
Author
Ye, Liwei 1 ; Yu, Zhentao 2 ; Zhang, Yaxun 1 ; Cheng, Chi 2   VIAFID ORCID Logo  ; Cheng, Pu 2 ; Chen, Jie 2 

 Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266500, China; [email protected] 
 Institute of Remote Sensing, Navy Submarine Academy, Qingdao 266000, China; [email protected] (C.C.); [email protected] (P.C.); [email protected] (J.C.) 
First page
3775
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072727036
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.