Full text

Turn on search term navigation

© 2023, Cloarec-Ung et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Precision gene editing in primary hematopoietic stem and progenitor cells (HSPCs) would facilitate both curative treatments for monogenic disorders as well as disease modelling. Precise efficiencies even with the CRISPR/Cas system, however, remain limited. Through an optimization of guide RNA delivery, donor design, and additives, we have now obtained mean precise editing efficiencies >90% on primary cord blood HSCPs with minimal toxicity and without observed off-target editing. The main protocol modifications needed to achieve such high efficiencies were the addition of the DNA-PK inhibitor AZD7648, and the inclusion of spacer-breaking silent mutations in the donor in addition to mutations disrupting the PAM sequence. Critically, editing was even across the progenitor hierarchy, did not substantially distort the hierarchy or affect lineage outputs in colony-forming cell assays or the frequency of high self-renewal potential long-term culture initiating cells. As modelling of many diseases requires heterozygosity, we also demonstrated that the overall editing and zygosity can be tuned by adding in defined mixtures of mutant and wild-type donors. With these optimizations, editing at near-perfect efficiency can now be accomplished directly in human HSPCs. This will open new avenues in both therapeutic strategies and disease modelling.

Details

Title
Near-perfect precise on-target editing of human hematopoietic stem and progenitor cells
Author
Cloarec-Ung Fanny-Mei; Beaulieu, Jamie; Suthananthan Arunan; Lehnertz Bernhard; Sauvageau, Guy; Sheppard, Hilary M; Knapp, David JHF
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2024
Publication date
2024
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3073879689
Copyright
© 2023, Cloarec-Ung et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.