Abstract

The superionic conductor Cu2−xSe has regained interest as a thermoelectric material owing to its low thermal conductivity, suggested to arise from a liquid-like Cu substructure, and the material has been coined a phonon-liquid electron-crystal. Using high-quality three-dimensional X-ray scattering data measured up to large scattering vectors, accurate analysis of both the average crystal structure as well as the local correlations is carried out to shed light on the Cu movements. The Cu ions show large vibrations with extreme anharmonicity and mainly move within a tetrahedron-shaped volume in the structure. From the analysis of weak features in the observed electron density, the possible diffusion pathway of Cu is identified, and it is clear from its low density that jumps between sites are infrequent compared with the time the Cu ions spend vibrating around each site. These findings support the conclusions drawn from recent quasi-elastic neutron scattering data, casting doubt on the phonon-liquid picture. Although there is diffusion of Cu ions in the structure, making it a superionic conductor, the jumps are infrequent and probably not the origin of the low thermal conductivity. From three-dimensional difference pair distribution function analysis of the diffuse scattering data, strongly correlated movements are identified, showing atomic motions which conserve interatomic distances at the cost of large changes in angles.

Details

Title
Dynamic correlations and possible diffusion pathway in the superionic conductor Cu2−xSe
Author
Roth, Nikolaj; Iversen, Bo Brummerstedt
Pages
199-209
Section
Research Papers
Publication year
2023
Publication date
Mar 2023
Publisher
International Union of Crystallography
e-ISSN
20522525
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3074124658
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.