Abstract

- The analysis of the regions of the image is of the prerogatives in the fields of medical and global systems meant for location identification. This analysis is strongly associated with partitions of regions of interest such as segmentation. For an effective strategy of analyzing the regions of interest, texture of the image plays a major concern. The texture is generally characterized using signal processing methods namely Discrete Cosine Transformation coefficients and their specific insights leading to feature vector selection. Further, to identify regions, a statistical model needs to be identified for the feature matrix vector and thus make use of Gaussian mixture model with extensions. The Expectation Maximization approach is used, and performance is assessed by experimenting with random images from the Brodatz data store domain. Performance measurements for texture segmentation that can be attributed are Global Cons. Error (GC), Prob. Rand. Index (PR) and Variation of data (VA). These are determined alongside the confusion matrix. To assess the improvement, a comparison was made with other existing models and showed better. The algorithms will be exceptionally helpful for clinical analysis and in radio navigation map systems.

Details

Title
Multivariate Approach for Texture Segmentation using Probabilistic Statistical Model
Author
Kumar, K Naveen 1 ; Kumar, G V Raj 1 ; Koti, B Raja 1 ; Sekhar, M C Jagan 2 ; Pragnatha, P V 3 ; Manisha, P V Sai

 GST, GITAM Deemed to be University, A.P, India 
 CSE, Lendi Institute of Engineering & Technology, AP, A.P, India 
 CSIT, Lendi Institute of Engineering & Technology, AP, A.P, India 
Pages
2381-2385
Publication year
2024
Publication date
2024
Publisher
Engineering and Scientific Research Groups
e-ISSN
11125209
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3074172500
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.