Full Text

Turn on search term navigation

© 2024 Sagib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The modified Benjamin-Bona-Mahony (mBBM) model is utilized in the optical illusion field to describe the propagation of long waves in a nonlinear dispersive medium during a visual illusion (Khater 2021). This article investigates the mBBM equation through the utilization of the rational -expansion technique to derive new analytical wave solutions. The analytical solutions we have obtained comprise hyperbolic, trigonometric, and rational functions. Some of these exact solutions closely align with previously published results in specific cases, affirming the validity of our other solutions. To provide insights into diverse wave propagation characteristics, we have conducted an in-depth analysis of these solutions using 2D, 3D, and density plots. We also investigated the effects of various parameters on the characteristics of the obtained wave solutions of the model. Moreover, we employed the techniques of linear stability to perform stability analysis of the considered model. Additionally, we have explored the stability of the associated dynamical system through the application of phase plane theory. This study also demonstrates the efficacy and capabilities of the rational -expansion approach in analyzing and extracting soliton solutions from nonlinear partial differential equations.

Details

Title
On traveling wave solutions with stability and phase plane analysis for the modified Benjamin-Bona-Mahony equation
Author
Sagib; Hossain, Aslam; Saha, Bijan Krishna; Khan, Kamruzzaman  VIAFID ORCID Logo 
First page
e0306196
Section
Research Article
Publication year
2024
Publication date
Jul 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3075014901
Copyright
© 2024 Sagib et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.