Abstract

Photovoltaic (PV) energy systems are a leading type of renewable energy systems globally. Predicting PV energy production accurately is crucial for maintaining efficient energy grids, making informed decisions in the energy market, and reducing maintenance costs. To ensure high accuracy and optimal production, it is essential to monitor and analyze these variables regularly. Solar radiation and temperature are two meteorological variables that directly affect the quantity of PV energy generated in PV facilities. The Performance Ratio (PR) is a critical parameter for assessing PV plant performance. A comprehensive model was constructed in this study to forecast solar radiation and temperature using multiple machine learning methods, including Instance-Based K-Nearest Neighbor Algorithm (IBK), Linear Regression, Random Forests, Random Tree, Multilayer Perceptron (MLP), and MLP Regression. Moreover, we used time series approaches, such as Simple Exponential Smoothing (SES), Error-Trend-Seasonality (ETS), Autoregressive Integrated Moving Average (ARIMA) and Holt Winter's Seasonal Method (HWES) models for PV systems prediction. Initially, we conducted daily forecasts as well as 1-step ahead forecasts at 5-minute intervals for both solar radiation and temperature. It is crucial to subject both variables to the same methodology in order to construct precise models for forecasting PV. Secondly, we compared the predicted values of solar radiation and temperature with the actual energy yield of the power plant to calculate energy production. Subsequently, a relative analysis of data mining models and time series models have been performed depending on the statistical error criteria like RMSE, MAPE, MABE, MAE, MSE, and direction accuracy (DAC).

Details

Title
A Comparative Study of Data Mining Methods for Solar Radiation and Temperature Forecasting Models
Author
Alay, F Didem  VIAFID ORCID Logo  ; İlhan, Nagehan  VIAFID ORCID Logo  ; M. Tahir Güllüoğlu  VIAFID ORCID Logo 
Pages
847-877
Section
Research Article
Publication year
2024
Publication date
2024
Publisher
Pensoft Publishers
ISSN
0948695X
e-ISSN
09486968
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3075666457
Copyright
© 2024. This work is licensed under https://creativecommons.org/licenses/by-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.