It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An electrochemically homogeneous electrode-solution interface should be understood as spatially invariant in both terms of intrinsic reactivity for the electrode side and electrical resistance mainly for the solution side. The latter remains presumably assumed in almost all cases. However, by using optical microscopy to spatially resolve the classic redox electrochemistry occurring at the whole surface of a gold macroelectrode, we discover that the electron transfer occurs always significantly sooner (by milliseconds), rather than faster in essence, at the radial coordinates closer to the electrode periphery than the very center. So is the charging process when there is no electron transfer. Based on optical measurements of the interfacial impedance, this spatially unsynchronized electron transfer is attributed to a radially non-uniform distribution of solution resistance. We accordingly manage to eliminate the heterogeneity by engineering the solution resistance distribution. The revealed spatially-dependent charging time ‘constant’ (to be questioned) would help paint our overall fundamental picture of electrode kinetics.
Classical theories of electrode kinetics assume a homogeneous electrode-solution interface. Here, authors reveal that electron transfer at a macroscopic electrode exhibits significant spatial inhomogeneity due to nonuniform solution resistance, which can be reduced by a retracted electrode design.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X)
2 Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen, China (GRID:grid.12955.3a) (ISNI:0000 0001 2264 7233); Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China (GRID:grid.510968.3)