It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Design of two-stage Stirling cryocooler with a unique long second expansion space volume is proposed to effectively reduce the displacer length and mass. The thermodynamic performance of this cooler which is similar to a pulse tube cryocooler with the warm-end expander is investigated by the numerical analysis. The long expansion space at the second stage behaves as a pulse tube with a temperature gradient along the longitudinal direction. Similar to the conventional two-stage Stirling cryocooler, the displacer simultaneously recovers the expansion work at the first stage expansion space and the warm end of the second stage expansion space. Although the long expansion space is an additional compliance volume to the second stage, the stepped displacer can still produce sufficient phase shift for both regenerators at the first and the second stages. This configuration brings the advantage of recovering the expansion work and eliminating the moving part at the coldest region of the cooler. The designed two-stage Stirling cryocooler has a cooling power of 10 W at 50 K and 30 W at 100 K with the input PV power of 352.9 W. The detailed thermal analysis presents its characteristic with the comparison to a conventional two-stage Stirling cryocooler which has the same displacer diameters.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology , Daejeon , Republic of Korea
2 Callaghan Innovation , 5 Sheffield Crescent, Christchurch 8053 , New Zealand