It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mixed-refrigerant Joule-Thomson refrigeration (MJTR) is an important cooling method at temperatures from 80 to 230 K. It can be used in cryosurgery, high-temperature superconductivity and sensor cooling etc. However, most of the studies are on nitrogen-hydrocarbon refrigerants, which are not allowed in applications where there is a special need to avoid flammability risks. Therefore, non-flammable mixed refrigerants were investigated in this study.
The composition of the mixed refrigerant is a key factor in the system performance (refrigeration temperature, refrigeration capacity, etc). However, the purely mathematical optimization methods lack system knowledge in the optimization of the process, and may have the disadvantages of being a time-consuming process. In this study, the isothermal throttling effect of mixed refrigerants is optimized, and the optimization process is based on the partial molar enthalpy difference of each component. The method is based on thermodynamic properties and is time-saving relative to purely mathematical optimization techniques.
Non-flammable mixed refrigerants (NFMR) with refrigeration temperatures from 100 K to 140 K were designed in this study. The results show that the designed mixed refrigerant has a higher COP compared to the reference. Argon has an advantage at refrigeration temperatures from 120 K to 140 K, while nitrogen has an advantage from 100 K to 120 K. In addition, mixed refrigerants for systems with pre-cooling stage were optimized and the results showed that the highest exergy efficiency is achieved at a pre-cooling temperature of 250 K. The exergy efficiencies with pre-cooling stage are nearly twice as high as those without that. Therefore, a pre-cooling stage for nonflammable mixed refrigerants is necessary where there is no requirement for system size.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China; University of Chinese Academy of Sciences , Beijing 100049 , China
2 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China; University of Chinese Academy of Sciences , Beijing 100049 , China; Qingdao Casfuture Research Institute Co., Ltd. , Qingdao, Shandong, 266109 , China
3 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China