It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Contracting skeletal muscle produces reactive oxygen species (ROS) originating from both mitochondrial and cytosolic sources. The use of non-specific antioxidants, such as vitamins C and E, during exercise has produced inconsistent results in terms of exercise performance. Consequently, the effects of the mitochondrial-targeted coenzyme Q10, named Mitoquinone (MitoQ) on exercise responses are currently under investigation.
Methods
In this study, we conducted a meta-analysis to quantitatively synthesize research assessing the impact of MitoQ on aerobic endurance performance and exercise-induced oxidative damage. PubMed, Web of Science, and SCOPUS databases were used to select articles from inception to January 16th of 2024. Inclusion criteria were MitoQ supplementation must be compared with a placebo group, showing acute exercise responses in both; for crossover designs, at least 14 d of washout was needed, and exercise training can be concomitant to MitoQ or placebo supplementation if the study meets the other inclusion criteria points. The risk of bias was evaluated through the Critical Appraisal Checklist (JBI).
Results
We identified eight studies encompassing a total sample size of 188 subjects. Our findings indicate that MitoQ supplementation effectively reduces exercise-induced oxidative damage (SMD: -1.33; 95% CI: -2.24 to -0.43). Furthermore, our findings indicate that acute and/or chronic MitoQ supplementation does not improve endurance exercise performance (SMD: -0.50; 95% CI: -1.39 to 0.40) despite reducing exercise-induced oxidative stress. Notably, our sensitivity analysis reveals that MitoQ may benefit subjects with peripheral artery disease (PAD) in improving exercise tolerance.
Conclusion
While MitoQ effectively reduces exercise-induced oxidative damage, no evidence suggests that aerobic exercise performance is enhanced by either acute or chronic MitoQ supplementation. However, acute MitoQ supplementation may improve exercise tolerance in subjects with PAD. Future research should investigate whether MitoQ supplementation concurrent with exercise training (e.g., 4–16 weeks) alters adaptations induced by exercise alone and using different doses.
Key points
Contracting skeletal muscle produces ROS from both mitochondrial and cytosolic sources, potentially impairing exercise performance.
MitoQ supplementation reduces exercise-induced oxidative damage but does not improve endurance exercise performance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Universidad Loyola Andalucía, Department of Communication and Education, Faculty of Physical Activity and Sports, Sevilla, Spain (GRID:grid.449008.1) (ISNI:0000 0004 1795 4150)
2 Universidad Loyola Andalucía, Department of Health Sciences, Faculty of Physical Activity and Sports, Córdoba, Spain (GRID:grid.449008.1) (ISNI:0000 0004 1795 4150)