It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The deposition of paraffin on pipelines during crude oil transit and low-temperature restart processes poses a significant challenge for the oil industry. Addressing this issue necessitates the exploration of innovative materials and methods. Pour point depressants (PPDs) emerge as crucial processing aids to modify paraffin crystallization and enhance crude oil flow. This study focuses on the combustion of polyethylene terephthalate (PET) waste, a prevalent plastic, in two distinct oils (castor and jatropha). The resulting black waxy substances (PET/Castor and PET/Jatropha) were introduced in varying weights (1000, 2000, and 3000 ppm) to crude oil. The PET/castor oil combination demonstrated a remarkable reduction in pour point from 18 to −21 °C at 3000 ppm concentration, significantly more effective than PET/jatropha blends. Substantial decreases in viscosity (up to 75%) and shear stress (up to 72%) were also observed for both blends, most prominently at lower temperatures near the pour point. The synergistic effect of PET and oils as nucleating agents that alter crystallization patterns and restrict crystal growth contributes to this enhanced low-temperature flow. This highlights the potential of PET plastic waste as an economical, abundant, and eco-friendly additive to develop high-performance PPDs for crude oil.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Egyptian Atomic Energy Authority (EAEA), Radiation Research of Polymer Chemistry Department, National Centre for Radiation Research and Technology (NCRRT), Cairo, Egypt (GRID:grid.429648.5) (ISNI:0000 0000 9052 0245)
2 Egyptian Petroleum Research Institute, Evaluation and Analysis Department, Cairo, Egypt (GRID:grid.454081.c) (ISNI:0000 0001 2159 1055)