Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Advanced glycation endproducts (AGEs) are the final products resulting from non-enzymatic glycation, which plays a crucial role in diabetes and aging-related health issues. The aim of the present investigation was to examine the inhibitory effects on AGE formation of aqueous and methanolic extracts from cereals (rice, rye, and wheat), pseudocereals (amaranth, quinoa, and buckwheat) and chia seeds. Different in vitro models simulating AGEs induced by glucose (Glc) and methylglyoxal (MGO) were evaluated. The MGO-trapping capacity of extracts was evaluated, alongside their antioxidant capacity and phenolic compound composition, with the aim of exploring any potential correlation with AGEs’ inhibitory effects. Extracts (25 mg/mL) demonstrated inhibitory effects on AGEs in protein–Glc and protein–MGO assays, with inhibition levels ranging from below 10% (amaranth extracts) to over 90% (buckwheat extracts) compared with aminoguanidine. Buckwheat methanolic extract exhibited the highest anti-AGE activity (98.3% inhibition in the BSA–Glc and 89.5% inhibition in the BSA–MGO assay), followed by chia seed extracts (80–82% inhibition). Buckwheat aqueous extract showed the greatest capacity to directly trap MGO (IC50 = 0.3 mg/mL). Antioxidants and phenolic compounds likely contributed to their antiglycative activity. In conclusion, aqueous and methanolic extracts derived from different natural ingredients such as cereals, pseudocereals, and seeds can be valuable in preventing glycation-related complications.

Details

Title
In Vitro Bioactivities of Cereals, Pseudocereals and Seeds: Assessment of Antiglycative and Carbonyl-Trapping Properties
Author
Mesías, Marta  VIAFID ORCID Logo  ; Holgado, Francisca; Olombrada, Elena  VIAFID ORCID Logo  ; Morales, Francisco José  VIAFID ORCID Logo 
First page
5684
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3078995649
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.