Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Detecting defects on a steel surface is crucial for the quality enhancement of steel, but its effectiveness is impeded by the limited number of high-quality samples, diverse defect types, and the presence of interference factors such as dirt spots. Therefore, this article proposes a fine-tuned deep learning approach to overcome these obstacles in unstructured few-shot settings. Initially, to address steel surface defect complexities, we integrated a serial multi-scale attention mechanism, concatenating attention and spatial modules, to generate feature maps that contain both channel information and spatial information. Further, a pseudo-label semi-supervised learning algorithm (SSL) based on a variant of the locally linear embedding (LLE) algorithm was proposed, enhancing the generalization capability of the model through information from unlabeled data. Afterwards, the refined model was merged into a fine-tuned few-shot object detection network, which applied extensive base class samples for initial training and sparsed new class samples for fine-tuning. Finally, specialized datasets considering defect diversity and pixel scales were constructed and tested. Compared with conventional methods, our approach improved accuracy by 5.93% in 7-shot detection tasks, markedly reducing manual workload and signifying a leap forward for practical applications in steel defect detection.

Details

Title
Few-Shot Steel Defect Detection Based on a Fine-Tuned Network with Serial Multi-Scale Attention
Author
Liu, Xiangpeng  VIAFID ORCID Logo  ; Jiao, Lei; Peng, Yulin  VIAFID ORCID Logo  ; Kang, An  VIAFID ORCID Logo  ; Wang, Danning; Lu, Wei  VIAFID ORCID Logo  ; Han, Jianjiao  VIAFID ORCID Logo 
First page
5823
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079014879
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.