Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aiming at the problem that dynamic targets in indoor environments lead to low accuracy and large errors in the localization and position estimation of visual SLAM systems and the inability to build maps containing semantic information, a semantic visual SLAM algorithm based on the semantic segmentation network DeepLabV3+ and LK optical flow is proposed based on the ORB-SLAM2 system. First, the dynamic target feature points are detected and rejected based on the lightweight semantic segmentation network DeepLabV3+ and LK optical flow method. Second, the static environment occluded by the dynamic target is repaired using the time-weighted multi-frame fusion background repair technique. Lastly, the filtered static feature points are used for feature matching and position calculation. Meanwhile, the semantic labeling information of static objects obtained based on the lightweight semantic segmentation network DeepLabV3+ is fused with the static environment information after background repair to generate dense point cloud maps containing semantic information, and the semantic dense point cloud maps are transformed into semantic octree maps using the octree spatial segmentation data structure. The localization accuracy of the visual SLAM system and the construction of the semantic maps are verified using the widely used TUM RGB-D dataset and real scene data, respectively. The experimental results show that the proposed semantic visual SLAM algorithm can effectively reduce the influence of dynamic targets on the system, and compared with other advanced algorithms, such as DynaSLAM, it has the highest performance in indoor dynamic environments in terms of localization accuracy and time consumption. In addition, semantic maps can be constructed so that the robot can better understand and adapt to the indoor dynamic environment.

Details

Title
Semantic Visual SLAM Algorithm Based on Improved DeepLabV3+ Model and LK Optical Flow
Author
Li, Yiming 1   VIAFID ORCID Logo  ; Wang, Yize 2 ; Lu, Liuwei 2 ; Guo, Yiran 2 ; An, Qi 3 

 Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100192, China; Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China 
 Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100192, China 
 Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China 
First page
5792
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079015921
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.