Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper systematically investigates the structure, stability, and electronic properties of niobium carbide clusters, NbmCn (m = 5, 6; n = 1–7), using density functional theory. Nb5C2 and Nb5C6 possess higher dissociation energies and second-order difference energies, indicating that they have higher thermodynamic stability. Moreover, ab initio molecular dynamics (AIMD) simulations are used to demonstrate the thermal stability of these structures. The analysis of the density of states indicates that the molecular orbitals of NbmCn (m = 5, 6; n = 1–7) are primarily contributed by niobium atoms, with carbon atoms having a smaller contribution. The composition of the frontier molecular orbitals reveals that niobium atoms contribute approximately 73.1% to 99.8% to NbmCn clusters, while carbon atoms contribute about 0.2% to 26.9%.

Details

Title
Exploring the Structural and Electronic Properties of Niobium Carbide Clusters: A Density Functional Theory Study
Author
Hui-Fang, Li 1   VIAFID ORCID Logo  ; Wang, Huai-Qian 2   VIAFID ORCID Logo  ; Yu-Kun, Zhang 1 

 College of Engineering, Huaqiao University, Quanzhou 362021, China 
 College of Engineering, Huaqiao University, Quanzhou 362021, China; College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China 
First page
3238
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079196186
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.