Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A robust wood material crack detection algorithm, sensitive to small targets, is indispensable for production and building protection. However, the precise identification and localization of cracks in wooden materials present challenges owing to significant scale variations among cracks and the irregular quality of existing data. In response, we propose a crack detection algorithm tailored to wooden materials, leveraging advancements in the YOLOv8 model, named ICDW-YOLO (improved crack detection for wooden material-YOLO). The ICDW-YOLO model introduces novel designs for the neck network and layer structure, along with an anchor algorithm, which features a dual-layer attention mechanism and dynamic gradient gain characteristics to optimize and enhance the original model. Initially, a new layer structure was crafted using GSConv and GS bottleneck, improving the model’s recognition accuracy by maximizing the preservation of hidden channel connections. Subsequently, enhancements to the network are achieved through the gather–distribute mechanism, aimed at augmenting the fusion capability of multi-scale features and introducing a higher-resolution input layer to enhance small target recognition. Empirical results obtained from a customized wooden material crack detection dataset demonstrate the efficacy of the proposed ICDW-YOLO algorithm in effectively detecting targets. Without significant augmentation in model complexity, the mAP50–95 metric attains 79.018%, marking a 1.869% improvement over YOLOv8. Further validation of our algorithm’s effectiveness is conducted through experiments on fire and smoke detection datasets, aerial remote sensing image datasets, and the coco128 dataset. The results showcase that ICDW-YOLO achieves a mAP50 of 69.226% and a mAP50–95 of 44.210%, indicating robust generalization and competitiveness vis-à-vis state-of-the-art detectors.

Details

Title
ICDW-YOLO: An Efficient Timber Construction Crack Detection Algorithm
Author
Zhou, Jieyang 1   VIAFID ORCID Logo  ; Ning, Jing 2   VIAFID ORCID Logo  ; Zhiyang Xiang 1   VIAFID ORCID Logo  ; Yin, Pengfei 1   VIAFID ORCID Logo 

 College of Computer Science and Engineering, Jishou University, Jishou 416000, China; [email protected] (J.Z.); [email protected] (Z.X.) 
 School of Communication and Electronic Engineering, Jishou University, Jishou 416000, China; [email protected] 
First page
4333
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079242719
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.