Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, a language-level Semantics-Conditioned framework for 3D Point cloud segmentation, called SeCondPoint, is proposed, where language-level semantics are introduced to condition the modeling of the point feature distribution, as well as the pseudo-feature generation, and a feature–geometry-based Mixup approach is further proposed to facilitate the distribution learning. Since a large number of point features could be generated from the learned distribution thanks to the semantics-conditioned modeling, any existing segmentation network could be embedded into the proposed framework to boost its performance. In addition, the proposed framework has the inherent advantage of dealing with novel classes, which seems an impossible feat for the current segmentation networks. Extensive experimental results on two public datasets demonstrate that three typical segmentation networks could achieve significant improvements over their original performances after enhancement by the proposed framework in the conventional 3D segmentation task. Two benchmarks are also introduced for a newly introduced zero-shot 3D segmentation task, and the results also validate the proposed framework.

Details

Title
Language-Level Semantics-Conditioned 3D Point Cloud Segmentation
Author
Liu, Bo 1 ; Zeng, Hui 2   VIAFID ORCID Logo  ; Dong, Qiulei 1   VIAFID ORCID Logo  ; Hu, Zhanyi 1 

 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; [email protected] (B.L.); [email protected] (Q.D.); [email protected] (Z.H.) 
 Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China 
First page
2376
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079257777
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.