Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, a technology named SCM−ANN combining physical scattering mechanisms and artificial intelligence is proposed to realize radar cross-section (RCS) extrapolation of non-cooperative conductor targets with higher efficiency. Firstly, an adaptive scattering center (SC) extraction algorithm is used to construct the scattering center model (SCM) for non-cooperative targets from radar echoes in the low-frequency band (LFB). Secondly, an artificial neural network (ANN) is constructed to capture the nonlinear relationship between the real LFB echoes and those reconstructed from the SCM. Finally, the SCM is used to reconstruct echoes in the high-frequency band (HFB), and these reconstructions, together with the trained ANN, optimize the extrapolated HFB RCS. For the SCM−ANN technology, physical mechanistic modes are used for trend prediction, and artificial intelligence is used for regression optimization based on trend prediction. Simulation results show that the proposed method can achieve a 50% frequency extrapolation range, with an average prediction error reduction of up to 40% compared with the traditional scheme. By incorporating physical mechanisms, this proposed approach offers improved accuracy and an extended extrapolation range compared with the RCS extrapolation techniques relying solely on numerical prediction.

Details

Title
Intelligent RCS Extrapolation Technology of Target Inspired by Physical Mechanism Based on Scattering Center Model
Author
Fang-Yin, Zhu  VIAFID ORCID Logo  ; Shui-Rong Chai  VIAFID ORCID Logo  ; Li-Xin, Guo; Zhen-Xiang He  VIAFID ORCID Logo  ; Yu-Feng, Zou  VIAFID ORCID Logo 
First page
2506
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079257781
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.