Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Snow cover products are primarily derived from the Moderate-resolution Imaging Spectrometer (MODIS) and Advanced Very-High-Resolution Radiometer (AVHRR) datasets. MODIS achieves both snow/non-snow discrimination and snow cover fractional retrieval, while early AVHRR-based snow cover products only focused on snow/non-snow discrimination. The AVHRR Climate Data Record (AVHRR-CDR) provides a nearly 40-year global dataset that has the potential to fill the gap in long-term snow cover fractional monitoring. Our study selects the Qinghai–Tibet Plateau as the experimental area, utilizing AVHRR-CDR surface reflectance data (AVH09C1) and calibrating with the MODIS snow product MOD10A1. The snow cover percentage retrieval from the AVHRR dataset is performed using Surface Reflectance at 0.64 μm (SR1) and Surface Reflectance at 0.86 μm (SR2), along with a simulated Normalized Difference Snow Index (NDSI) model. Also, in order to detect the effects of land-cover type and topography on snow inversion, we tested the accuracy of the algorithm with and without these influences, respectively (vanilla algorithm and improved algorithm). The accuracy of the AVHRR snow cover percentage data product is evaluated using MOD10A1, ground snow-depth measurements and ERA5. The results indicate that the logic model based on NDSI has the best fitting effect, with R-square and RMSE values of 0.83 and 0.10, respectively. Meanwhile, the accuracy was improved after taking into account the effects of land-cover type and topography. The model is validated using MOD10A1 snow-covered areas, showing snow cover area differences of less than 4% across 6 temporal phases. The improved algorithm results in better consistency with MOD10A1 than with the vanilla algorithm. Moreover, the RMSE reaches greater levels when the elevation is below 2000 m or above 6000 m and is lower when the slope is between 16° and 20°. Using ground snow-depth measurements as ground truth, the multi-year recall rates are mostly above 0.7, with an average recall rate of 0.81. The results also show a high degree of consistency with ERA5. The validation results demonstrate that the AVHRR snow cover percentage remote sensing product proposed in this study exhibits high accuracy in the Tibetan Plateau region, also demonstrating that land-cover type and topographic factors are important to the algorithm. Our study lays the foundation for a global snow cover percentage product based on AVHRR-CDR and furthermore lays a basic work for generating a long-term AVHRR-MODIS fractional snow cover dataset.

Details

Title
A New Retrieval Algorithm of Fractional Snow over the Tibetan Plateau Derived from AVH09C1
Author
Yin, Hang 1 ; Xu, Liyan 2   VIAFID ORCID Logo  ; Li, Yihang 1 

 College of Architecture and Landscape Architecture, Peking University, 5 Summer Palace Road, Haidian, Beijing 100871, China; [email protected] (H.Y.); [email protected] (Y.L.); College of Urban and Environmental Sciences, Peking University, 5 Summer Palace Road, Haidian, Beijing 100871, China 
 College of Architecture and Landscape Architecture, Peking University, 5 Summer Palace Road, Haidian, Beijing 100871, China; [email protected] (H.Y.); [email protected] (Y.L.) 
First page
2260
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079275072
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.