Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Over several decades, high-frequency (HF) radars have been employed for remotely measuring various ocean surface parameters, encompassing surface currents, waves, and winds. Wind direction and speed are usually estimated from both first-order and second-order Bragg-resonant scatter from two or more HF radars monitoring the same area of the ocean surface. This limits the observational domain to the common area where second-order scatter is available from at least two radars. Here, we propose to estimate wind direction and speed from the first-order scatter of a single HF radar, yielding the same spatial coverage as for surface radial currents. Wind direction is estimated using the ratio of the positive and negative first-order Bragg peaks intensity, with a new simple algorithm to remove the left/right directional ambiguity from a single HF radar. Wind speed is estimated from wind direction and de-tided surface radial currents using an artificial neural network which has been trained with in situ wind speed observations. Radar-derived wind estimations are compared with in situ observations in the Lower Saint-Lawrence Estuary (Quebec, Canada). The correlation coefficients between radar-estimated and in situ wind directions range from 0.84 to 0.95 for Wellen Radars (WERAs) and from 0.79 to 0.97 for Coastal Ocean Dynamics Applications Radars (CODARs), while the root mean square differences range from 8° to 12° for WERAs and from 10° to 19° for CODARs. Correlation coefficients between the radar-estimated and the in situ wind speeds range from 0.89 to 0.93 for WERAs and from 0.81 to 0.93 for CODARs, while the root mean square differences range from 1.3 m.s−1 to 2.3 m.s−1 for WERAs and from 1.6 m.s−1 to 3.9 m.s−1 for CODARs.

Details

Title
Estimation of the Wind Field with a Single High-Frequency Radar
Author
Dussol, Abïgaëlle; Chavanne, Cédric  VIAFID ORCID Logo 
First page
2258
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079275097
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.