Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Titanium parts fabricated by additive manufacturing, i.e., laser or electron beam-powder bed fusion (L- or EB-PBF), usually exhibit columnar grain structures along the build direction, resulting in both microstructural and mechanical anisotropy. Post-heat treatments are usually used to reduce or eliminate such anisotropy. In this work, Ti-6Al-2Zr-1Mo-1V (TA15) alloy samples were fabricated by L-PBF to investigate the effect of post-heat treatment and load direction on the dynamic response of the samples. Post-heat treatments included single-step annealing at 800 °C (HT) and a hot isotropic press (HIP). The as-built and heat-treated samples were dynamically compressed using a split Hopkinson pressure bar at a strain rate of 3000 s−1 along the horizontal and vertical directions paralleled to the load direction. The microstructural observation revealed that the as-built TA15 sample exhibited columnar grains with fine martensite inside. The HT sample exhibited a fine lamellar structure, whereas the HIP sample exhibited a coarse lamellar structure. The dynamic compression results showed that post-heat treatment at 800 °C led to reduced flow stress but enhanced uniform plastic strain and damage absorption work. However, the HIP samples exhibited both higher stress, uniform plastic strain, and damage absorption work owing to the microstructure coarsening. Additionally, the load direction had a subtle influence on the flow stress, indicating the negligible anisotropy of flow stress in the samples. However, there was more significant anisotropy of the uniform plastic strain and damage absorption. The samples had a higher load-bearing capacity when dynamically compressed perpendicular to the build direction.

Details

Title
Dynamic Response of Ti-6Al-2Zr-1Mo-1V Alloy Manufactured by Laser Powder-Bed Fusion
Author
Qin, Hanzhao 1 ; Maierdan, Alafate 2 ; Li, Nan 3 ; Wang, Changshun 1 ; Li, Chenglin 1   VIAFID ORCID Logo 

 School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China; [email protected] (H.Q.); [email protected] (C.W.) 
 School of Mechatronic Engineering, Xinjiang Vocational & Technical College of Communications, Urumqi 831401, China; [email protected] 
 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 
First page
3361
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079337331
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.