Abstract

Lithium batteries with solid-state electrolytes are an appealing alternative to state-of-the-art non-aqueous lithium-ion batteries with liquid electrolytes because of safety and energy aspects. However, engineering development at the cell level for lithium batteries with solid-state electrolytes is limited. Here, to advance this aspect and produce high-energy lithium cells, we introduce a cell design based on advanced parametrization of microstructural and architectural parameters of electrode and electrolyte components. To validate the cell design proposed, we assemble and test (applying a stack pressure of 3.74 MPa at 45 °C) 10-layer and 4-layer solid-state lithium pouch cells with a solid polymer electrolyte, resulting in an initial specific energy of 280 Wh kg−1 (corresponding to an energy density of 600 Wh L−1) and 310 Wh kg−1 (corresponding to an energy density of 650 Wh L−1) respectively.

Multiscale design principles and empirical processing techniques are considered for the design of high-energy-density Li-based batteries using polymer electrolytes. Here, the authors demonstrate the effectiveness of this approach by assembling and testing ampere-hour-level solid-state lithium-based pouch cells.

Details

Title
Advanced parametrization for the production of high-energy solid-state lithium pouch cells containing polymer electrolytes
Author
Lee, Wonmi 1   VIAFID ORCID Logo  ; Lee, Juho 2   VIAFID ORCID Logo  ; Yu, Taegyun 1   VIAFID ORCID Logo  ; Kim, Hyeong-Jong 3   VIAFID ORCID Logo  ; Kim, Min Kyung 4   VIAFID ORCID Logo  ; Jang, Sungbin 1   VIAFID ORCID Logo  ; Kim, Juhee 1   VIAFID ORCID Logo  ; Han, Yu-Jin 1   VIAFID ORCID Logo  ; Choi, Sunghun 5   VIAFID ORCID Logo  ; Choi, Sinho 1 ; Kim, Tae-Hee 1   VIAFID ORCID Logo  ; Park, Sang-Hoon 1   VIAFID ORCID Logo  ; Jin, Wooyoung 1   VIAFID ORCID Logo  ; Song, Gyujin 1   VIAFID ORCID Logo  ; Seo, Dong-Hwa 6   VIAFID ORCID Logo  ; Jung, Sung-Kyun 3   VIAFID ORCID Logo  ; Kim, Jinsoo 1   VIAFID ORCID Logo 

 Korea Institute of Energy Research, Ulsan Advanced Energy Technology R&D Center, Ulsan, Republic of Korea (GRID:grid.418979.a) (ISNI:0000 0001 0691 7707) 
 Korea Institute of Energy Research, Ulsan Advanced Energy Technology R&D Center, Ulsan, Republic of Korea (GRID:grid.418979.a) (ISNI:0000 0001 0691 7707); Ulsan National Institute of Science and Technology (UNIST), Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan, Republic of Korea (GRID:grid.42687.3f) (ISNI:0000 0004 0381 814X) 
 Ulsan National Institute of Science and Technology (UNIST), Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan, Republic of Korea (GRID:grid.42687.3f) (ISNI:0000 0004 0381 814X) 
 Korea Institute of Energy Research, Ulsan Advanced Energy Technology R&D Center, Ulsan, Republic of Korea (GRID:grid.418979.a) (ISNI:0000 0001 0691 7707); Pusan National University, Department of Nano Fusion Technology, Busan, Republic of Korea (GRID:grid.262229.f) (ISNI:0000 0001 0719 8572) 
 Korea Institute of Energy Research, Gwangju Clean Energy Research Center, Gwangju, Republic of Korea (GRID:grid.418979.a) (ISNI:0000 0001 0691 7707); Kangwon National University, Department of Battery Convergence Engineering, Chuncheon, Republic of Korea (GRID:grid.412010.6) (ISNI:0000 0001 0707 9039) 
 Korea Advanced Institute of Science and Technology (KAIST), Department of Materials Science and Engineering, Daejeon, Republic of Korea (GRID:grid.37172.30) (ISNI:0000 0001 2292 0500) 
Pages
5860
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079595886
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.