Abstract

Controlled low-strength material (CLSM) is widely applied in many backfill engineering applications because of its excellent workability and sustainability. However, for CLSM using native soil as fine aggregate and industrial by-products as a binder, the flow-ability and self-leveling performance will deteriorate, and the setting time will be slower, which is unsuitable for construction applications. The addition of additives is regarded as an effective technique for improving the performance of CLSM. Although the effects of nano-SiO2 on the performance of concrete have been the subject of many studies, little research has been done on its effects on CLSM. The present work investigated the effects of adding nano-SiO2 as an additive. The flow-ability, hydraulic penetrometer, and unconfined compressive strength (UCS) tests are performed with the increasing nano-SiO2 content. Lastly, the mercury intrusion porosimetry (MIP) test is carried out to identify the effects of nano-SiO2 on the morphology of pores. For controlled low-strength materials using native silt soil, significant improvements in setting time and strength are observed with the increase of nano-SiO2. A decrease in the average pore diameter and an increase in the percentage of pore diameter below 20 nm are also observed in the specimen with nano-SiO2.

Details

Title
Effect of nano-SiO2 on flow-ability, setting time and strength properties of controlled low-strength materials using native silt soil
Author
Qiu, Haomiao 1 ; Jiang, Senhua 1 ; Shou, Lei 2 

 Zhejiang University , Hangzhou 310058, China 
 Hangzhou CBD Development Group CO, LTD. , Hangzhou 310058, China 
First page
012004
Publication year
2024
Publication date
Jun 2024
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3081569708
Copyright
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.