It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nonlinear intersubband polaritonic metasurfaces, which integrate giant nonlinear responses derived from intersubband transitions of multiple quantum wells (MQWs) with plasmonic nanoresonators, not only facilitate efficient frequency conversion at pump intensities on the order of few tens of kW cm-2 but also enable electrical modulation of nonlinear responses at the individual meta-atom level and dynamic beam manipulation. The electrical modulation characteristics of the magnitude and phase of the nonlinear optical response are realized through Stark tuning of the resonant intersubband nonlinearity. In this study, we report, for the first time, experimental implementations of electrical modulation characteristics of mid-infrared third-harmonic generation (THG) using an intersubband polaritonic metasurface based on MQW with electrically tunable third-order nonlinear response. Experimentally, we achieved a 450% modulation depth of the THG signal, 86% suppression of zero-order THG diffraction tuning based on local phase tuning exceeding 180 degrees, and THG beam steering using phase gradients. Our work proposes a new route for electrically tunable flat nonlinear optical elements with versatile functionalities.
Electrically tunable mid-infrared third-harmonic generation is experimentally demonstrated using an intersubband polaritonic metasurface based on a multiple quantum-well structure with Stark tuning of the third-order nonlinear response.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Ulsan National Institute of Science and Technology (UNIST), Department of Electrical Engineering, Ulsan, Republic of Korea (GRID:grid.42687.3f) (ISNI:0000 0004 0381 814X)
2 Technical University of Munich, Walter Schottky Institute, Garching, Germany (GRID:grid.6936.a) (ISNI:0000 0001 2322 2966)