Abstract

Ankle push-off power plays an important role in healthy walking, contributing to center-of-mass acceleration, swing leg dynamics, and accounting for 45% of total leg power. The majority of existing passive energy storage and return prostheses for people with below-knee (transtibial) amputation are stiffer than the biological ankle, particularly at slower walking speeds. Additionally, passive devices provide insufficient levels of energy return and push-off power, negatively impacting biomechanics of gait. Here, we present a clinical study evaluating the kinematics and kinetics of walking with a microprocessor-controlled, variable-stiffness ankle-foot prosthesis (945 g) compared to a standard low-mass passive prosthesis (Ottobock Taleo, 463 g) with 7 study participants having unilateral transtibial amputation. By modulating prosthesis stiffness under computer control across walking speeds, we demonstrate that there exists a stiffness that increases prosthetic-side energy return, peak power, and center-of-mass push-off work, and decreases contralateral limb peak ground reaction force compared to the standard passive prosthesis across all evaluated walking speeds. We demonstrate a significant increase in center-of-mass push-off work of 26.1%, 26.2%, 29.6% and 29.9% at 0.75 m/s, 1.0 m/s, 1.25 m/s, and 1.5 m/s, respectively, and a significant decrease in contralateral limb ground reaction force of 3.1%, 3.9%, and 3.2% at 1.0 m/s, 1.25 m/s, and 1.5 m/s, respectively. This study demonstrates the potential for a quasi-passive microprocessor-controlled variable-stiffness prosthesis to increase push-off power and energy return during gait at a range of walking speeds compared to a passive device of a fixed stiffness.

Details

Title
Variable-stiffness prosthesis improves biomechanics of walking across speeds compared to a passive device
Author
Rogers-Bradley, Emily 1 ; Yeon, Seong Ho 2 ; Landis, Christian 2 ; Lee, Duncan R. C. 3 ; Herr, Hugh M. 2 

 Massachusetts Institute of Technology, K. Lisa Yang Center for Bionics, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); University of Calgary, Department of Mechanical and Manufacturing Engineering, Calgary, Canada (GRID:grid.22072.35) (ISNI:0000 0004 1936 7697) 
 Massachusetts Institute of Technology, K. Lisa Yang Center for Bionics, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); Massachusetts Institute of Technology, Media Lab, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 Massachusetts Institute of Technology, K. Lisa Yang Center for Bionics, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
Pages
16521
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3082045366
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.