Abstract

The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I–IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.

Details

Title
Multi-omics machine learning to study host-microbiome interactions in early-onset colorectal cancer
Author
Jayakrishnan, Thejus T. 1   VIAFID ORCID Logo  ; Sangwan, Naseer 2 ; Barot, Shimoli V. 3   VIAFID ORCID Logo  ; Farha, Nicole 3 ; Mariam, Arshiya 4 ; Xiang, Shao 5 ; Aucejo, Federico 5 ; Conces, Madison 6 ; Nair, Kanika G. 7 ; Krishnamurthi, Smitha S. 7 ; Schmit, Stephanie L. 8 ; Liska, David 9 ; Rotroff, Daniel M. 4 ; Khorana, Alok A. 7 ; Kamath, Suneel D. 7   VIAFID ORCID Logo 

 Cleveland Clinic, Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725); Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, USA (GRID:grid.65499.37) (ISNI:0000 0001 2106 9910) 
 Cleveland Clinic, Microbial Sequencing & Analytics Resource (MSAAR), Lerner Research Institute, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725) 
 Cleveland Clinic, Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725) 
 Cleveland Clinic, Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725); Cleveland Clinic, Center for Quantitative Metabolic Research, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725) 
 Cleveland Clinic, Department of Surgery, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725) 
 Case Comprehensive Cancer Center, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0004 0455 2742); University Hospital Seidman Cancer Center, Department of Hematology-Oncology, Cleveland, USA (GRID:grid.473817.e) (ISNI:0000 0004 0418 9795) 
 Cleveland Clinic, Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725); Case Comprehensive Cancer Center, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0004 0455 2742); Cleveland Clinic, Center for Young-Onset Colorectal Cancer, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725) 
 Cleveland Clinic, Center for Young-Onset Colorectal Cancer, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725); Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725); Case Comprehensive Cancer Center, Population and Cancer Prevention Program, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0004 0455 2742) 
 Case Comprehensive Cancer Center, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0004 0455 2742); Cleveland Clinic, Center for Young-Onset Colorectal Cancer, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725); Cleveland Clinic, Department of Colorectal Surgery, Digestive Disease & Surgery Institute, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725) 
Pages
146
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
ISSN
2397768X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3082045685
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.