Abstract
In the framework of the Asymptotic Safety scenario for quantum gravity, we analyze quantum gravity modifications to the thermal characteristics of a thin accretion disk spiraling around a renormalization group improved (RGI-) Kerr black hole in the low energy regime. We focused on the quantum effects on the location of the innermost stable circular orbit (ISCO), the energy flux from the disk, the disk temperature, the observed redshifted luminosity, and the accretion efficiency. The deviations from the classical general relativity due to quantum effects are described for a free parameter that arises in the improved Kerr metric as a consequence of the fact that the Newton constant turns into a running coupling G(r) depending on the energy scale. We find that, both for rapid and slow rotating black holes with accretion disks in prograde and retrograde circulation, increases in the value of this parameter are accompanied by a decreasing of the ISCO, by a lifting of the peaks of the radiation properties of the disk and by an increase of the accretion mass efficiency, as compared with the predictions of general relativity. Our results confirm previously established findings in Zuluaga and Sánchez (Eur Phys J C 81:840, 2021) where we showed that these quantum gravity effects also occur for an accretion disk around a RGI-Schwarzschild black hole.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer