It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The electrochemical oxygen reduction reaction (ORR) to produce hydrogen peroxide (H2O2) is appealing due to its sustainability. However, its efficiency is compromised by the competing 4e− ORR pathway. In this work, we report a hierarchical carbon nanosheet array electrode with a single-atom Ni catalyst synthesized using organic molecule-intercalated layered double hydroxides as precursors. The electrode exhibits excellent 2e− ORR performance under alkaline conditions and achieves H2O2 yield rates of 0.73 mol gcat−1 h−1 in the H-cell and 5.48 mol gcat−1 h−1 in the flow cell, outperforming most reported catalysts. The experimental results show that the Ni atoms selectively adsorb O2, while carbon nanosheets generate reactive hydrogen species, synergistically enhancing H2O2 production. Furthermore, a coupling reaction system integrating the 2e− ORR with ethylene glycol oxidation significantly enhances H2O2 yield rate to 7.30 mol gcat−1 h−1 while producing valuable glycolic acid. Moreover, we convert alkaline electrolyte containing H2O2 directly into the downstream product sodium perborate to reduce the separation cost further. Techno-economic analysis validates the economic viability of this system.
Electrochemical oxygen reduction is a promising method for H2O2 production but suffers from poor activity and low yield. In this work, the authors present Ni single atom catalyst for efficient H2O2 production which is further coupled with organic oxidation reaction to enhance the economic feasibility of the system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Beijing University of Chemical Technology, State Key Laboratory of Chemical Resource Engineering, Beijing, China (GRID:grid.48166.3d) (ISNI:0000 0000 9931 8406)
2 Beijing University of Chemical Technology, State Key Laboratory of Chemical Resource Engineering, Beijing, China (GRID:grid.48166.3d) (ISNI:0000 0000 9931 8406); Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, China (GRID:grid.48166.3d)