It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Semantic image synthesis approaches has been dominated by the modelling of Convolutional Neural Networks (CNN). Due to the limitations of local perception, their performance improvement seems to have plateaued in recent years. To tackle this issue, we propose the SC-UNet model, which is a UNet-like network fused Swin Transformer and CNN for semantic image synthesis. Photorealistic image synthesis conditional on the given semantic layout depends on the high-level semantics and the low-level positions. To improve the synthesis performance, we design a novel conditional residual fusion module for the model decoder to efficiently fuse the hierarchical feature maps extracted at different scales. Moreover, this module combines the opposition-based learning mechanism and the weight assignment mechanism for enhancing and attending the semantic information. Compared to pure CNN-based models, our SC-UNet combines the local and global perceptions to better extract high- and low-level features and better fuse multi-scale features. We have conducted an extensive amount of comparison experiments, both in quantitative and qualitative terms, to validate the effectiveness of our proposed SC-UNet model for semantic image synthesis. The outcomes illustrate that SC-UNet distinctively outperforms the state-of-the-art model on three benchmark datasets (Citysacpes, ADE20K, and COCO-Stuff) including numerous real-scene images.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Wuhan University, School of Cyber Science and Engineering, Wuhan, China (GRID:grid.49470.3e) (ISNI:0000 0001 2331 6153); Ministry of Education, Key Laboratory of Aerospace Information Security and Trusted Computing, Wuhan, China (GRID:grid.419897.a) (ISNI:0000 0004 0369 313X)