Abstract

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative condition leading to progressive muscle weakness, atrophy, and ultimately death. Traditional ALS clinical evaluations often depend on subjective metrics, making accurate disease detection and monitoring disease trajectory challenging. To address these limitations, we developed the nQiALS toolkit, a machine learning-powered system that leverages smartphone typing dynamics to detect and track motor impairment in people with ALS. The study included 63 ALS patients and 30 age- and sex-matched healthy controls. We introduce the three core components of this toolkit: the nQiALS-Detection, which differentiated ALS from healthy typing patterns with an AUC of 0.89; the nQiALS-Progression, which separated slow and fast progression at specific thresholds with AUCs ranging between 0.65 and 0.8; and the nQiALS-Fine Motor, which identified subtle progression in fine motor dysfunction, suggesting earlier prediction than the state-of-the-art assessment. Together, these tools represent an innovative approach to ALS assessment, offering a complementary, objective metric to traditional clinical methods and which may reshape our understanding and monitoring of ALS progression.

Details

Title
A novel digital tool for detection and monitoring of amyotrophic lateral sclerosis motor impairment and progression via keystroke dynamics
Author
Acien, Alejandro 1 ; Calcagno, Narghes 2 ; Burke, Katherine M. 3 ; Mondesire-Crump, Ijah 4 ; Holmes, Ashley A. 5 ; Mruthik, Sri 6 ; Goldy, Ben 6 ; Syrotenko, Janina E. 6 ; Scheier, Zoe 3 ; Iyer, Amrita 3 ; Clark, Alison 3 ; Keegan, Mackenzie 3 ; Ushirogawa, Yoshiteru 7 ; Kato, Atsushi 7 ; Yasuda, Taku 7 ; Lahav, Amir 8 ; Iwasaki, Satoshi 8 ; Pascarella, Mark 9 ; Johnson, Stephen A. 10 ; Arroyo-Gallego, Teresa 9 ; Berry, James D. 3 

 Area 2 AI Corporation, Cambridge, USA; nQ Medical, Cambridge, USA 
 Healey & AMG Center for ALS, Massachusetts General Hospital, Department of Neurology, Boston, USA (GRID:grid.32224.35) (ISNI:0000 0004 0386 9924); University of Milan, Neurology Residency Program, Milan, Italy (GRID:grid.4708.b) (ISNI:0000 0004 1757 2822) 
 Healey & AMG Center for ALS, Massachusetts General Hospital, Department of Neurology, Boston, USA (GRID:grid.32224.35) (ISNI:0000 0004 0386 9924) 
 nQ Medical, Cambridge, USA (GRID:grid.32224.35); Simbec Orion, Wales, UK (GRID:grid.32224.35) 
 nQ Medical, Cambridge, USA (GRID:grid.32224.35); ProKidney Corporation, Winston-Salem, USA (GRID:grid.32224.35) 
 nQ Medical, Cambridge, USA (GRID:grid.32224.35) 
 Mitsubishi Tanabe Pharma Corporation, Osaka, Japan (GRID:grid.32224.35) (ISNI:0000 0004 0629 2251) 
 Mitsubishi Tanabe Pharma America, Inc, Jersey City, USA (GRID:grid.32224.35) 
 Area 2 AI Corporation, Cambridge, USA (GRID:grid.32224.35); nQ Medical, Cambridge, USA (GRID:grid.32224.35) 
10  Healey & AMG Center for ALS, Massachusetts General Hospital, Department of Neurology, Boston, USA (GRID:grid.32224.35) (ISNI:0000 0004 0386 9924); Mayo ALS Clinic, Scottsdale, USA (GRID:grid.32224.35) 
Pages
16851
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3083312515
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.