It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Precision in grazing management is highly dependent on accurate pasture monitoring. Typically, this is often overlooked because existing approaches are labour-intensive, need calibration, and are commonly perceived as inaccurate. Machine-learning processes harnessing big data, including remote sensing, can offer a new era of decision-support tools (DST) for pasture monitoring. Its application on-farm remains poor because of a lack of evidence about its accuracy. This study aimed at evaluating and quantifying the minimum data required to train a machine-learning satellite-based DST focusing on accurate pasture biomass prediction using this approach. Management data from 14 farms in New South Wales, Australia and measured pasture biomass throughout 12 consecutive months using a calibrated rising plate meter (RPM) as well as pasture biomass estimated using a DST based on high temporal/spatial resolution satellite images were available. Data were balanced according to farm and week of each month and randomly allocated for model evaluation (20%) and for progressive training (80%) as follows: 25% training subset (1W: week 1 in each month); 50% (2W: week 1 and 3); 75% (3W: week 1, 3, and 4); and 100% (4W: week 1 to 4). Pasture biomass estimates using the DST across all training datasets were evaluated against a calibrated rising plate meter (RPM) using mean-absolute error (MAE, kg DM/ha) among other statistics. Tukey’s HSD test was used to determine the differences between MAE across all training datasets. Relative to the control (no training, MAE: 498 kg DM ha−1) 1W did not improve the prediction accuracy of the DST (P > 0.05). With the 2W training dataset, the MAE decreased to 342 kg DM ha−1 (P < 0.001), while for the other training datasets, MAE decreased marginally (P > 0.05). This study accounts for minimal training data for a machine-learning DST to monitor pastures from satellites with comparable accuracy to a calibrated RPM which is considered the ‘gold standard’ for pasture biomass monitoring.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The University of Sydney, Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, Camden, Australia (GRID:grid.1013.3) (ISNI:0000 0004 1936 834X)
2 NSW Department of Primary Industries, Menangle, Australia (GRID:grid.1680.f) (ISNI:0000 0004 0559 5189)
3 Local Land Services, Hunter, Taree, Australia (GRID:grid.1680.f)
4 Ag Farming Systems, Hunter, Taree, Australia (GRID:grid.1680.f)
5 Agricultural Consulting, Northern Rivers, Australia (GRID:grid.1680.f)