Full Text

Turn on search term navigation

© 2024 Dong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Hypertensive nephropathy (HN) is one of the main causes of end-stage renal disease (ESRD), leading to serious morbidity and mortality in hypertensive patients. However, existing treatment for hypertensive nephropathy are still very limited. It has been demonstrated that aerobic exercise has beneficial effects on the treatment of hypertension. However, the underlying mechanisms of exercise in HN remain unclear.

Methods

The spontaneously hypertensive rats (SHR) were trained for 8 weeks on a treadmill with different exercise prescriptions. We detected the effects of moderate intensity continuous training (MICT) and high intensity interval training (HIIT) on inflammatory response, renal function, and renal fibrosis in SHR. We further investigated the relationship between TLR4 and the NLRC4 inflammasome in vitro HN model.

Results

MICT improved renal fibrosis and renal injury, attenuating the inflammatory response by inhibiting TLR4/NF-κB pathway and the activation of NLRC4 inflammasome. However, these changes were not observed in the HIIT group. Additionally, repression of TLR4/NF-κB pathway by TAK-242 inhibited activation of NLRC4 inflammasome and alleviated the fibrosis in Ang II-induced HK-2 cells.

Conclusion

MICT ameliorated renal damage, inflammatory response, and renal fibrosis via repressing TLR4/NF-κB pathway and the activation of NLRC4 inflammasome. This study might provide new references for exercise prescriptions of hypertension.

Details

Title
MICT ameliorates hypertensive nephropathy by inhibiting TLR4/NF-κB pathway and down-regulating NLRC4 inflammasome
Author
Dong, Wenyu  VIAFID ORCID Logo  ; Luo, Minghao; Li, Yun; Chen, Xinhua; Li, Lingang; Chang, Qing
First page
e0306137
Section
Research Article
Publication year
2024
Publication date
Jul 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084712109
Copyright
© 2024 Dong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.