Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To facilitate the utility of field effect transistor (FET)-type sensors, achieving sensitivity enhancement beyond the Nernst limit is crucial. Thus, this study proposed a novel approach for the development of ferroelectric FETs (FeFETs) using lead zirconate titanate (PZT) ferroelectric films integrated with indium–tungsten oxide (IWO) channels synthesized via a cost-effective sol-gel process. The electrical properties of PZT-IWO FeFET devices were significantly enhanced through the strategic implementation of PZT film treatment by employing intentional annealing procedures. Consequently, key performance metrics, including the transfer curve on/off ratio and subthreshold swings, were improved. Moreover, unprecedented electrical stability was realized by eliminating the hysteresis effect during double sweeps. By leveraging a single-gate configuration as an FeFET transformation element, extended-gate (EG) detection methodologies for pH sensing were explored, thereby introducing a pioneering dimension to sensor architecture. A measurement paradigm inspired by plane gate work was adopted, and the proposed device exhibited significant resistive coupling, consequently surpassing the sensitivity thresholds of conventional ion-sensitive field-effect transistors. This achievement represents a substantial paradigm shift in the landscape of ion-sensing methodologies, surpassing the established Nernst limit (59.14 mV/pH). Furthermore, this study advances FeFET technology and paves the way for the realization of highly sensitive and reliable ion sensing modalities.

Details

Title
Enhancement of Ion-Sensitive Field-Effect Transistors through Sol-Gel Processed Lead Zirconate Titanate Ferroelectric Film Integration and Coplanar Gate Sensing Paradigm
Author
Dong-Gyun Mah 1 ; Oh, Seong-Moo 2 ; Jung, Jongwan 2   VIAFID ORCID Logo  ; Won-Ju, Cho 1   VIAFID ORCID Logo 

 Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea; [email protected] 
 Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea; [email protected] (S.-M.O.); 
First page
134
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22279040
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084716275
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.